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Chapter 1.0: Google Earth Engine (GEE) 

1.1 Platform Overview  

Google Earth Engine (GEE) is a cloud-based platform for processing geospatial data, that 

enables environmental monitoring and analysis on a large scale (Gorelick et al., 2017). Since 

its release in 2010, GEE has been freely accessible for academic and research purposes, 

offering allocated quotas for commercial applications (Waleed & Sajjad, 2023). The GEE 

platform offers extensive capabilities, including (Figure 1): 

• Accessing large amounts of remote sensing data that is publicly available that reaches 

to petabyte scale and pre-processed data products providing access for over 40 years of 

satellite datasets via an interactive explorer web application. 

• High-performance machine learning (ML) algorithms and parallel computing 

leveraging Google's powerful computational network. 

• A comprehensive Application Programming Interfaces (APIs) library that is compatible 

with widely used programming languages like JavaScript and Python. 

• The browser-based Integrated Development Environment (IDE) in Google Earth 

Engine (GEE) eliminates the need for software installation or maintenance, providing 

a fully online platform for geospatial analysis. 

 

Fig. 1 Overview of Google Earth Engine Platform  

The catalog largely consists of remote sensing imagery from Earth observation missions, 

notably the full Landsat archive and the complete datasets of Sentinel-1 and 2. Additionally, it 

encompasses datasets of climate prediction and forecast, land use and cover data, and various 

geophysical, atmospheric, and socio-economic (Tamiminia et al., 2020). These datasets get 

updated continuously with nearly 6,000 new scenes that get added daily from ongoing and 

active missions, with an average delay of 24 hours post-acquisition (Gorelick et al., 2017). 

Users based on their requirements may also request for the extension of the latest datasets to 
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the public domain or can also upload their data, accessible through command-line tools or 

browser-based, with options that can be shared with other groups or different users. 

Fig. 2 Core components of Google Earth Engine Platform (Source: 

https://developers.google.com/earth-engine) 

Apart from its extensive data catalog, a notable advantage of Google Earth Engine (GEE) is its 

robust system architecture. Google Earth Engine runs on powerful technology from Google’s 

data systems. It uses tools to manage lots of computers working together, store data across 

different places, and process multiple tasks at the same time to get things done faster (Gorelick 

et al., 2017). This design allows users to leverage GEE’s extensive library of nearly a thousand 

functions, spanning from simple algebraic operations to complex geostatistical, image 

processing, and machine learning algorithms. The Figure 2 illustrates the core components of 

Google Earth Engine (GEE), highlighting its integration of satellite imagery, user-defined 

algorithms, and real-world applications. 

1.2 Applications of GEE 

Google Earth Engine (GEE) is invaluable for its ability to significantly reduce analysis time 

by utilizing Google's powerful computing infrastructure, enabling researchers to perform tasks 

that were previously unfeasible by running computations across thousands of machines. With 

access to petabytes of data, GEE facilitates efficient large-scale analyses. Its advanced features, 

such as tools for cloud and haze removal, streamline image pre-processing, enhancing both 

usability and precision. Moreover, GEE fosters collaboration and standardization by offering a 

unified platform for global data analysis, enabling shared research efforts and consistent 

methodologies across diverse scientific disciplines.  

It provides a robust platform for advanced spatial analysis, empowering researchers to address 

diverse challenges across multiple scientific disciplines (Figure 3). Its extensive analytical 

capabilities enable the integration and exploration of a wide array of geospatial datasets, 

supporting the development of innovative solutions to pressing global issues (Velastegui-

Montoya et al., 2023). GEE is pivotal in facilitating real-time monitoring of deforestation, 

forecasting droughts, assessing climate change impacts, and responding rapidly to natural 

disasters (Amani et al., 2020). Furthermore, it contributes to disease control through spatial 

analytics, enhances food security by tracking crop health, and advances sustainability through 

urban planning and environmental assessments. 

In addition, GEE plays a crucial role in addressing land use changes and deforestation, both of 

which place significant stress on forest ecosystems, essential for water regulation and soil 

stabilization (Suryawanshi et al., 2023; Singh et al., 2024). The advent and availability of 
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advanced sensors and satellite products have further escalated the complexity of processing 

and interpreting vast spatial datasets, presenting new challenges and opportunities for 

researchers (Suryawanshi et al., 2021, Wangchu et al., 2024).   

             
Fig. 3 Applications and utilities of Google Earth Engine  

        
Fig. 4 Pro and cons of GEE  

The pros and cons of Google Earth Engine (GEE) highlight both its strengths and limitations 

as a platform for large-scale geospatial analysis (Figure 4). On the positive side, GEE offers 

unparalleled access to vast datasets without the need for local storage, backed by Google's 

powerful computing infrastructure. Its advanced raster processing tools and ability to share 

codes and scripts make it a highly collaborative platform. However, the platform has some 

challenges, such as requiring programming skills, reliance on an internet connection, a primary 
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focus on raster-based imagery, and limited user data uploads. Despite these drawbacks, GEE 

remains a valuable tool for researchers and practitioners in various fields. 

1.3 How does it Work? 

Google Earth Engine (GEE) is designed to democratize extensive-scale geospatial data analysis 

through its accessible, web-based platform. The registration process is straightforward, and 

once your account is verified, you gain access to GEE's powerful tools for satellite image 

analysis and visualization. With a simple sign-in process and free access, GEE is an ideal 

resource for researchers and professionals looking to explore spatiotemporal datasets, such as 

those used for analyzing Land Use and Land Cover (LULC) changes. To begin with Google 

Earth Engine, the steps are to be done: 

Step 1: Visit the Google Earth Engine Website 

• Go to the official GEE website at https://earthengine.google.org. 

Step 2: Navigate to the Sign-Up Page 

• On the homepage, click on "Get Started" or navigate to the "Sign Up" section. 

 

Step 3: Get started using Earth Engine 

• On the Product Registration page, select whether to register a Non-commercial or 

Commercial Cloud project.   

• Next, specify your intended use of Earth Engine by selecting either Paid or Unpaid usage, 

depending on your requirements, and click “Next”. For instance, we selected “Unpaid usage” 

under the “Academia & Research” category. Ensure that you choose the option that best aligns 

with your specific use case. 
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Step 4: Create a new Google Cloud Project 

• In the following dialog, select “Create a new Google Cloud Project”. For the 

“Organization” field, choose “No organization” and then provide a unique Project ID. 

After entering the ID, click “Continue to Summary”.  

• If you are leveraging Google Cloud for the first time, you may encounter an error message 

that will ask you to accept the agreements of Cloud Terms of Service before starting a new 

project. If prompted, click the provided link to open the Google Cloud Console and accept 

the terms.  

 

Step 5: Confirm your Cloud project information 

• A summary of your project details will appear in the "Confirm your Cloud project 

information" dialog. Carefully review the information, then click “Confirm”.   



ICARNEH/PME-TU/Pub/2023/406   

6 

 

• Once the project is successfully registered, you will be redirected to the Code Editor. If 

this does not happen automatically, you can manually access the Code Editor by visiting 

https://code.earthengine.google.com/. 

  

Step 6: The code editor will now display details about the linked project 

 

Done! You are now set to begin utilizing your Earth Engine account with a Cloud Project. 

 1.4 Introduction to the code editor 

The Google Earth Engine Code Editor is a robust web-based framework that enables users to 

write JavaScript code for the analysis of geospatial data. It facilitates seamless access to 

Google’s extensive datasets, streamlines the processing of satellite imagery, and offers a range 

of tools for visualization and data export. 



ICARNEH/PME-TU/Pub/2023/406   

7 

 

 

As illustrated in the image, the left panel includes the Scripts, Docs, and Assets tabs, which 

facilitate the management of code and data. The central section is used for writing codes, where 

you may write and then execute scripts, while the results are shown in the Map Viewer placed 

below. On the right side, the Inspector/Console presents outputs from the executed code, and 

the Tasks tab oversees data exports. This web-based editor enhances the efficiency of 

spatiotemporal assessments, such as analyzing Land Use and Land Cover (LULC) changes 

within a specific region, by harnessing the cloud processing capabilities of Google Earth 

Engine. 

1.4.1 Script Sharing 

In Google Earth Engine, the process of sharing scripts is straightforward, fostering 

collaboration and providing easy access to geospatial analyses. By creating a shareable link, 

users can distribute their scripts, allowing others to execute, modify, or review the code directly 

within their own Code Editor. This functionality enhances teamwork and promotes knowledge 

exchange across various projects. To share a script in Google Earth Engine, follow these steps:   

• Open the script you wish to share in the section in Code Editor.   

• Click the "Get Link" button located at the top of the editor.   

• A shareable link will be generated; copy this link.   

• Send the link to anyone you would like to share the script with.   
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1.4.2 Client vs. Server object 

Earth Engine client libraries for Python and JavaScript facilitate the translation of intricate 

geospatial analyses into requests for Earth Engine. The code written for a client library may 

encompass a blend of references to client-side objects and variables that denote server-side 

objects.  

• “Client-side” refers to actions executed on the user's (the client’s) computer. 

• The user platform components within your Code Editor, such as the Drawing Tools and 

Map View, are classified as 'client-side' elements, as they operate within the browser. 

 

• “Server-side” variables denotes that the action is performed on a web server. 

• Conversely, image collections, feature collections, and calculations on Earth Engine objects 

are categorized as 'server-side' elements, executing within Google's data centres. It is 

important to note that these two types of objects cannot be mixed. 

 

To alter client-side entities into server-side, you need to utilize the relevant API functions, 

which are prefixed with “ee.”, like “ee.Date()” and “ee.Image()”. Conversely, to transform 

server-side entities into client-side entities, you may invoke the “getInfo()” method on an Earth 

Engine entities.  
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1.4.3 What can you do in Earth Engine? 

In Google Earth Engine (GEE), you can perform a wide array of advanced geospatial analyses 

as mentioned in the following (Table 1): 

Table 1. Possible analysis processes and their functions in GEE 

Analysis Process Functions 

Image Processing Map Algebra, Kernels and Convolutions, Spectral 

Unmixing, Pan-sharpening, Gap Filling, Data Fusion 

Vector Processing Zonal Statistics, Spatial Joins, Spatial Query etc. 

Terrain Processing Slope, Aspect, Hillshade, Hill Shadow Analysis 

Time Series Analysis Extract Time-Series, Trend Analysis, Time-Series 

Smoothing, Temporal Segmentation etc. 

Object-based Image Analysis GLCM, Texture, Hotspots etc. 

Change Detection Spectral Distance, Change Classification, Class 

Transitions 

Machine Learning Supervised and Unsupervised Classification, Linear 

Regression, Principal Components Analysis etc. 

Deep Learning DNN, Object Detection etc. via TensorFlow 

 

1.4.4 What you cannot do in Earth Engine? 

While Google Earth Engine (GEE) is a robust framework for performing geospatial analysis, 

there are certain limitations to its capabilities (Table 2). Some tasks require external tools or 

software to complement GEE's functionality: 

Table 2. Analysis processes cannot perform in GEE 

Analysis Process Functions 

Create Cartographic Outputs Have to use the GEE 

Plugin in QGIS to 

create maps 

3D visualization and analysis N/A 

Run Hydrological models (e.g., Rainfall-runoff modelling) and 

analyses (e.g., watershed delineation, fill depression) 

N/A 

Photogrammetry (e.g., Orthorectification, Point-Clouds) N/A 

LIDAR processing N/A 

SAR Interferometry (Earth Engine does not support images with 

complex values) 

N/A 

1.5 The Earth engine public data catalog 

The Earth Engine public data catalog is a huge collection of geospatial datasets, totaling 

multiple petabytes, that many users rely on. It primarily consists of Earth-observing remote 

sensing images, including the entire Landsat archive and all data from Sentinel-1 and Sentinel-

2. Besides that, it offers climate forecasts, land cover information, and a variety of other 

datasets related to the environment, geophysics, and socio-economic factors (Table 3). 

Earth Engine uses a simple data model based on 2D raster bands stored in lightweight "image" 

containers. Each pixel in a band needs to be consistent in data type, resolution, and projection. 

However, images can have multiple bands that don’t necessarily have to match in these aspects. 

Each image can also come with key/value metadata, which provides important details about 
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where and when the image was captured and the conditions under which it was collected or 

processed. 

 

Table 3. Commonly utilized datasets within the Earth Engine data catalog 

Datasets Spatial 

Resolution 

Temporal 

Resolution 

Data availability 

in GEE 

Sentinel 

Sentinel-1 10 6 days 2014 - present 

Sentinel-2 10/20m 5 days 2015 - present 

Landsat 

Landsat-8 30 m 16 days 2013 - present 

Landsat-7 30 m 16 days 2000 - present 

Landsat-5 30 m 16 days 1984 - 2012 

Landsat – 4 - 8 30 m 16 days 1984 - present 

MODIS    

MOD08 1° 1 day 2000 - Present 

MOD09 500 m 1day/8day 2000 - Present 

MOD10 500 m 1day 2000 - Present 

MOD11 1000 m 1day/8day 2000 - Present 

MOD12 500 m Annual 2000 - Present 

Topography    

SRTM 30 m Single 2000 

GTOPO30   30″ Single Multiple 

Landcover    

GlobCover   300m Non-periodic 2009 

JRC global surface water 30m Monthly 1984–2015 

USGS National Landcover  30m Non-periodic 1992–2011 

USDA NASS cropland data  30m  Annual 1997–2015 

Weather, Precipitation & atmosphere 

  CHIRPS 5 km 5 days 1981 - Present 

  GPM 11 km 3 hours 2014 - present 

  TRMM 27 km 3 hours 1998 - 2015 

  GLDAS 0.25° 3 hours 2000 - Present 

Population    

WorldPop   100m 5year 2010–2015 

Source: Gorelick et al. (2017) & https://developers.google.com/earth-engine/datasets/ 

1.6 Filtering and Displaying Data 

In this section, we will walk through a step-by-step tutorial on key operations in Google Earth 

Engine (GEE) for analyzing and visualizing satellite imagery. The tutorial will cover essential 

tasks such as filtering and displaying satellite images from Landsat datasets, importing raster 

and vector data, and performing calculations like clipping, reducing, and displaying data. 

Additionally, you will learn how to remove cloud cover from satellite images, calculate 

important spectral indices (e.g. NDVI, and NDWI), and enhance your maps with legends and 

titles to make your visualizations more informative and complete. 

1.6.1 Data Importing Process in Google Earth Engine 
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In Google Earth Engine (GEE), you can import data using two main methods: via the Data 

Catalog or through Assets. Here's a brief explanation of both methods: 

Method 1: Importing Data from the Data Catalog: 

The Data Catalog in GEE contains numerous publicly available datasets, that include satellite 

data, atmosphere data, land use and land cover maps, and many more. 

 

 

Step 1: Open the Data Catalog:  

• In Code Editor, click on the "Search" option to browse the datasets that are already 

available in the Google Earth Engine public data catalog. 

Step 2: Search for a Dataset:  

• You can search for Landsat, Sentinel, MODIS or any other dataset, for example, 

Landsat 8 data is used here. 

 

Step 3: Select and Import the Dataset:  

• Click on the dataset you want and hit the “Import” button. This will load the dataset as 

an ee.ImageCollection in your code editor. Same process will be use to import any 

vector dataset. 

Result

s 
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Method 2: Steps to importing Data from the Assets: 

Step 1: Navigate “Assets” button in code editor 

• Click on the "Assets" tab. 

Step 2: Click “New” button to upload data 

• Click the "New" button, then choose whether to upload an image (raster), table (vector), 

or other supported data types. 

 

1.6.2 Data Filtering and visualization 

Raster Data Upload 

Vector Data Upload 



ICARNEH/PME-TU/Pub/2023/406   

13 

 

In Google Earth Engine (GEE), data filtering and visualization are essential steps for narrowing 

down datasets and displaying them effectively. Here’s a breakdown of key functions used for 

these purposes: 

➢ Data Filtering Functions 

• filterBounds(geometry): Filters datasets based on a specific geographic boundary. The 

geometry argument can be a point, line, polygon, or other geometric shape. 

• filterDate(start, end): Filters datasets by date range. This function narrows down 

temporal datasets (like satellite imagery) within a specified period. 

• filter(ee.Filter.eq(property, value)): Filters datasets based on a property and its value. 

For example, it can be used to filter images with specific cloud cover percentages or 

certain land use types. 

• filterMetadata(name, operator, value): Similar to filter(), but this is more specialized 

for filtering datasets based on metadata fields (e.g., cloud cover or land cover type). 

 

 

➢ Data Visualization Functions 

• Map.addLayer(image, visParams, name): Adds an image layer to the map for 

visualization. The visParams argument controls the display settings (e.g., bands to 

display, color scales). 

• Map.centerObject(object, zoom): Centers the map view on a specific object, like a 

point or an image, at a certain zoom level. 

• Map.setCenter(lon, lat, zoom): Directly sets the map's center coordinates and zoom 

level. 

• image.visualize(): Converts an image into an RGB or grayscale visualization, with 

parameters like min, max, palette, etc. 
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• Map.addLegend() (custom): Though GEE does not have a built-in legend function, 

custom legends can be added using JavaScript/HTML elements. A legend provides 

context for map colours. 

These functions help refine data selection and visually represent results for clearer analysis. 

 

1.6.3 Calculation of Spectral Indices 

Calculating various indices using remote sensing data is essential for using land cover, crop 

health, and water resources. In Earth Engine (EE), the application of normalized difference 

indices enables researchers to get useful and important information from satellite images. The 

provided code snippet illustrates the calculation of several important indices, including the 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Snow Index (NDSI), 

Normalized Difference Water Index (NDWI), Modified Soil Adjusted Vegetation Index 

(MSAVI), and the Modified Normalized Difference Water Index (MNDWI). Each index is 

computed using specific spectral bands, which are normalized to highlight particular features 

within the study area. The resulting layers are then visualized on the map, providing insights 

into the spatial distribution of vegetation, water, and snow cover, which are crucial for 

environmental monitoring and land management practices. 
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Chapter 2.0: Machine Learning 

2.1    Overview of ML in GEE  

ML that falls under one of the components of artificial intelligence (AI) highlights on 

developing algorithms that enable ML models to take decisions or predictions based on data 

(Huang and Jensen, 1997; Maxwell et al., 2018). These approaches have proven effective for 

processing remotely sensed data and constitute a fundamental component of the computational 

algorithms employed by the Google Earth Engine (GEE) platform. The integration of process-

oriented computational tuning tools by Google aims to streamline workflows, reducing the 

need for offline processing (Schulz et al., 2018; Zhou et al., 2020). 

ML algorithms are trained using labelled, unlabelled, or hybrid datasets, whereby the specific 

data requirements for a task inform the type of machine learning model developed (Alnuaimi 

& Albaldawi, 2024). Broadly, ML is categorized in three types: unsupervised learning, 

supervised learning, and reinforcement learning. Each of these approaches is applied in various 

contexts and with diverse datasets. Figure 5 illustrates the classification of machine learning 

algorithms. 

 
Fig. 5 Classification of Machine Learning Algorithm 

2.1.1 Common terminology involved in Machine Learning (GIS) 

Labeled data: This refers to datasets comprising a collection of training examples, where each 

example is represented as a pair containing an input and its corresponding desired output value, 

incorporating both attributes and labels. 

Classification: The objective of many machine learning projects is to predict discrete values, 

such as True or False, 1 or 0, or categories like Forest or Not Forest. 

Regression: This type of ML project aims to forecast continuous values, such as the percentage 

of land cover. 

Clustering: This is an unsupervised ML technique designed to group unlabelled examples 

depending on their similarities. When examples are labeled, this process is referred to as 

classification. 
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 2.2 What is a classifier? 

A classifier is an algorithm that categorizes data points (pixels) into predefined classes based 

on their attributes. In Google Earth Engine (GEE), classifiers are utilized to classify satellite 

imagery into meaningful (LULC) types. Algorithms responsible for executing the classification 

of data are called classifiers. There are two primary types of classifiers: 

• Binary Classifier: Used when the classification problem presents only two possible 

outcomes. Examples include YES or NO, MALE or FEMALE, CAT or DOG, SPAM or 

NOT SPAM, and. 

• Multi-class Classifier: Used when a classification involves more than two possible 

outcomes. This may include the classification of crop types, the categorization of music 

genres, and LULC classification. 

2.3 Supervised Learning  

Supervised learning (SL) is an ML paradigm that utilizes labelled datasets to train a system to 

predict outcomes based on its prior training. This approach closely resembles human learning, 

where an instructor guides the learner using specific examples to derive broader principles 

(Alnuaimi & Albaldawi, 2024).  

 

Fig. 6 General overview of supervised ML technique 

In the context of land classification, this machine learning technique employs ground truth 

examples to train a model to distinguish between different classes. Google Earth Engine's 

integrated supervised classifiers facilitate this process. Figure 6 illustrates the general overview 

of the supervised ML technique. Here are some key points related to supervised ML technique: 



ICARNEH/PME-TU/Pub/2023/406   

18 

 

• Input Data: The data in supervised learning includes both input features and labeled 

output. For example, in a house price prediction model, the features could be square 

footage, location, etc., while the output is the price. 

• When to Use: Supervised learning is suitable when you have clear labels and outcomes 

you are trying to predict. It is used in scenarios where the output is known and can be 

used to train the model. 

• Nature of Problem: Commonly used for regression (for predicting continuous 

outcomes) and classification (categorizing data into specific labels or classes). 

• Goal: The goal is to train the model on labeled data that is used for making correct 

predictions for unseen data. For instance, predicting whether an email is spam based on 

training data labeled as "spam" or "not spam." 

• Output: The model provides predicted labels based on the input data.  

• Associated Algorithms: Algorithms mainly include Linear Regression, Support 

Vector Machines (SVM), Logistic Regression, and K-Nearest Neighbors (KNN), each 

suited for different types of regression and classification problems. 

• Proximity to AI: Supervised learning is further from AI, as it relies more on human-

labeled data, making it less autonomous in finding patterns compared to other learning 

types like unsupervised learning. 

• Drawbacks: The major drawback is the requirement for a large number of labelled 

datasets, which can be time-consuming and expensive. Training can also be slow and 

resource-intensive. 

• Expected Accuracy: Models trained using supervised learning can achieve high 

accuracy because they are provided with clear examples during training. This is why it 

is widely used in high-stakes tasks like medical diagnosis or financial predictions. 

2.4 Unsupervised Learning 

Unsupervised learning entails training a machine using only input samples or labels, without 

any prior knowledge of the output. This method enables the discovery of patterns within the 

data and the formation of its own data clusters. It is particularly beneficial for identifying 

unknown patterns, such as in recommendation engines utilized by online retailers, which often 

employ unsupervised machine learning techniques, specifically clustering (Alnuaimi & 

Albaldawi, 2024). 
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Fig. 7 General overview of unsupervised ML technique 

In unsupervised classification, the training algorithm operates without any ground truth 

examples. Instead, it arranges the available data based on inherent differences among the data 

points into clusters. Google Earth Engine's unsupervised classifiers are particularly 

advantageous in situations where ground truth data is absent, when the final number of classes 

is unknown, or when rapid experimentation is required. The `ee.Clusterer` package facilitates 

unsupervised classification (or clustering) within Earth Engine, employing algorithms that 

align with those found in Weka. Figure 7 provides a general overview of the unsupervised 

machine learning technique. Below are some key points related to this approach: 

• Input Data: The data used in unsupervised learning is unstructured and unlabeled, 

meaning the model has no predefined output to learn from. For example, a dataset 

containing customer purchase history without any categorization. 

• When to Use: Unsupervised learning is of extreme use when you don’t have clear 

labels or when you're looking to explore the underlying structure of the data. It's ideal 

when the outcome or the nature of the desired result is unknown. 

• Nature of Problems: The most common problems tackled using unsupervised learning 

include clustering (grouping similar data), dimensionality reduction (simplifying data 

without losing essential information), and association (finding rules that describe 

relationships between variables). 

• Goal: The goal is to find hidden patterns or data groupings that can provide insights or 

reveal underlying structures.  

• Output: The output is generally clusters or association rules, revealing insights such as 

which items tend to be purchased together or which users exhibit similar behaviors. 

• Associated Algorithms: Some well-known unsupervised learning algorithms are K-

means, which groups similar items together, and DBSCAN, which identifies clusters 

based on how closely packed the data points are. Another common algorithm is 
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Principal Component Analysis (PCA), which simplifies data by reducing its dimensions 

while keeping the most important information. Finally, the Apriori Algorithm is used 

to find patterns and associations in data. 

• Drawbacks: A key drawback is that human intervention is often required to interpret 

the model's results and ensure they are meaningful. The output may also be inaccurate 

or difficult to validate since there are no predefined labels to measure against. 

• Expected Accuracy: The accuracy is generally lower compared to supervised learning 

because there are no labelled examples to guide the learning process, and results often 

require more subjective validation. 

2.5 LULC Classification in (GEE) 

GEE offers an extensive range of tools and functions for performing (LULC) classification, 

supporting various methodologies like change detection, multi-year classification, and model 

optimization. Below is a detailed look into the functions and techniques that can be applied 

within GEE for LULC analysis (Table 4). 

Table 4 Functions and techniques that can be applied within GEE for LULC analysis 

Application in LULC Description 

LULC Change 

Detection 
• LULC change detection identifies how land cover types change 

over time (Cui et al., 2022). 

• Helping researchers monitor environmental changes, 

deforestation, urbanization, and agricultural expansion. 

Malti Year LULC 

Classification 
• Multi-year LULC classification refers to the process of classifying 

satellite imagery over several years to analyze trends and monitor 

land use changes over time (Liu et al., 2020).  

• This helps in understanding how land cover transitions occur 

across different periods. 

• Useful in research related to climate change, ecosystem services, 

and land policy planning. 

Class-wise LULC 

change detection in 

ONE layer 

• Class-wise change detection focuses on tracking the changes in 

specific land cover classes within a single LULC map.  

• For example, it can help monitor how much forest has been 

converted to agricultural land or how water bodies have changed 

over time.  

• This method allows for focused analysis of land cover changes 

related to a specific class, which is tough for conservation, land 

management, and agricultural planning (Dubertret et al., 2022). 

Hyperparameter 

Tuning for 

improving the 

accuracy of your 

machine-learning 

model 

• Hyperparameter tuning is important for optimizing ML models, 

and improving the accuracy of classification results in GEE 

(Elgeldawi et al., 2021).  

• Hyperparameters are configuration settings for ML models that 

are not learned from the data but are set by the user (e.g., the 

number of trees in a Random Forest) (Ilemobayo et al., 2024). 
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Chapter 3.0: Tutorial (The process to make Landcover   

classification Map in GEE) 

 

3.1 Step 1: Selecting Your ROI (Region of Interest) in Google Earth Engine (GEE) 

1. Open the GEE Platform 

o Navigate to the GEE Code Editor by visiting: 

https://code.earthengine.google.com/. 

2. Go to the "Assets" Tab 

o In the Code Editor interface, locate the Assets tab on the left-hand panel. 

3. Click on "NEW" to Upload a Shapefile 

o Under the Assets tab, click the NEW button to upload your Region of Interest 

(ROI) as a shapefile. 
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o A dropdown menu will appear, select Shape files (.shp, .shx, .dbf, .prj, or .zip) 

from the list of asset types. 

4. Select Files from Your Folder 

o You will be prompted to upload the shapefile. Choose the necessary files from 

your local system. You may either upload individual files or a compressed .zip 

folder containing the following file formats: 

▪ Shapefile extensions allowed: .shp, .dbf, .prj, .shx, .zip 

▪ Additional optional extensions: .cpg, .fix, .qix, .sbn, .shp.xml 

 

5. Assign an Asset Name 

o After selecting the files, give your asset a meaningful name (e.g., 

"EastSiang_ROI"). This will make it easier to reference the shapefile in your 

analysis. 
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6. Click on "UPLOAD" 

o Once you've named your asset and selected the necessary files, click the 

UPLOAD button. Your files will be processed and added to your Earth Engine 

assets. 

7. Use the Uploaded Shapefile in Code 

o After uploading, your shapefile will be available as an asset in your GEE 

account. You can now use it in your code by referencing it like this: 

 

 

 

 

 

 

 

This will allow you to use your custom Region of Interest (ROI) in further analysis and 

processing within Google Earth Engine. 

8. Centre the Map on the ROI and Set the Zoom Level 

o Map.addLayer(ROI); This line of code adds your Region of Interest (ROI) as 

a layer to the map. 

o Map.centerObject(ROI, 10); This line centres the map view on the defined 

ROI and sets the zoom level to 10.  

o Click "Run".  

3.2 Step 2: Choosing and Filtering Image Collection in Google Earth Engine (GEE) 

In this step, you'll select a specific image collection (e.g., Landsat 8) and apply filters based on 

your Region of Interest (ROI), date range, and cloud cover. 

Steps to Filter Image Collection: 

1. Define the Image Collection 

o Use the Landsat 8 image collection for the analysis. The collection is referenced 

as ee.ImageCollection("LANDSAT/LC08/C02/T1_L2"), which provides 

Level-2 Surface Reflectance data. 

2. Filter by Region (ROI) 

o Apply the filterBounds(ROI) function to limit the images to your selected 

Region of Interest (ROI). 

3. Filter by Cloud Cover 

o Use filterMetadata('CLOUD_COVER','less_than', 5) to exclude images 

with more than 5% cloud cover. 

4. Filter by Date 

o Set a date range for the imagery by using the filterDate('YYYY-MM-DD') 

function to choose images from the year 2023. 
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5. Take the Median Composite 

o Use the .median() function to generate a median composite image, which 

reduces noise from multiple images. 

6. Clip the Image to ROI 

o Clip the image to the boundaries of your ROI using .clip(ROI) to limit the data 

to your area of interest. 

7. Display the Image 

o Finally, display the filtered image on the map using Map.addLayer(image).  

o  Click "Run".  

o Display the Image on the Map with Visualization Parameters- 

In this final step, you will display the filtered image on the map by selecting 

specific RGB bands and setting the visualization parameters. Select RGB 

Bands: For Landsat 8 imagery, the bands corresponding to Red, Green, and 

Blue (RGB) are: Red (SR_B4), Green (SR_B3) and Blue (SR_B2). 

Set Visualization Parameters: Define the minimum and maximum values for 

image stretching to adjust the contrast and brightness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Step 3: Collecting Sample Points Using Geometry Import in GEE for Land Cover 

Classification 

In this step, you'll collect sample points for each land cover type by manually selecting features 

such as points, lines, or polygons using the Geometry Import tool in Google Earth Engine. 

You will then assign a class label (e.g., 1 for water, 2 for eroded land, etc.) to each feature. 

Steps to Collect Sample Points: 



ICARNEH/PME-TU/Pub/2023/406   

25 

 

1. Open the Geometry Tool 

o In the left-hand panel of the GEE Code Editor, locate the Geometry Tools at 

the top left corner. 

o Click on the Geometry Imports dropdown to start drawing your sample points 

for different land cover types. 

2. Draw Features (Points, Lines, or Polygons)  

o Select a geometry type based on your requirement: 

▪ Point: For individual sample points. 

▪ Line: To mark linear features like roads or rivers. 

▪ Polygon: To draw areas representing land cover types like forests or 

agricultural fields. 

▪ Rectangle: For rectangular areas. 

o Click on the map to draw your points or shapes. After each feature is drawn, it 

will appear in the geometry list on the left-hand panel. 

3. Configure Geometry Properties 

o After drawing a feature, configure the Geometry Import settings. 

▪ Name: Give each feature a descriptive name, such as water, 

eroded_land, or dense_forest. 

▪ Import As: Choose FeatureCollection since you're collecting multiple 

points or areas. 

▪ Property: Set a property named Class, which will store the land cover 

class code. 

▪ Value: Assign a value to the property that corresponds to the land cover 

class. For example: 

▪ 1 for water/wetland 

▪ 2 for eroded land 

▪ 3 for dense forest 

▪ And so on for the other categories. 

4. Select the Colour for Each Class 

o To visually distinguish between different land cover types, you can assign a 

specific colour to each class. You will see an option to choose a colour for the 

feature once you've drawn it on the map. 

5. Click "OK" to Save 
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o Once the geometry is configured with the appropriate class property, click OK 

to save it as a feature collection. 

 

 

 

3.4 Step 4: Merge Feature Collections in GEE 

To classify the entire region based on multiple land cover types, you need to merge these 

separate feature collections into one combined FeatureCollection. The merging process 

ensures that all the sample points, representing different land cover categories, are grouped into 

a single collection.  

1. Merging: 

o The .merge() function is used to combine these individual collections into a single 

FeatureCollection called merged_sample. The function appends the features of 

one collection to another. 
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o The water.merge(eroded_land) command first combines the water and eroded 

land collections. Then .merge(dense_forest) and .merge(open_forest) are added 

in sequence. 

o Click "Run". 

2. Result: 

o The resulting merged_sample contains all the features from the original feature 

collections, each with the assigned Class property. 

o This merged collection can now be used for further analysis, such as extracting 

training data or running a classification algorithm. 

3.5 Step 5: Creating a Training Dataset by Sampling Regions 

In this step, we will create a training dataset by extracting the pixel values from selected 

image bands for each point in the merged feature collection (representing various land cover 

classes). This is done using the sampleRegions function in GEE. 

Explanation of the Steps: 

1. Selecting the Bands: 

o We define the bands that we want to use for classification. In this case, we are 

using the seven spectral bands from Landsat 8 (SR_B1 to SR_B7), which 

capture information from different parts of the electromagnetic spectrum. 

2. Sampling the Image: 

o The sampleRegions() function is used to extract the pixel values for each band 

at the locations of the sample points (in the sample feature collection). Each 

sample point represents a specific land cover type, and the pixel values at that 

location are extracted for the specified bands. 

o The properties argument specifies which property (in this case, Class) contains 

the land cover class for each point. 

o The scale argument specifies the resolution at which to sample the image, which 

is 30 meters for Landsat 8. 

3. Training Dataset: 

o The resulting training variable is a FeatureCollection where each feature 

contains the pixel values for the selected bands as well as the corresponding 

land cover class. This is your training dataset, which will be used for training a 

machine learning classifier.  
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Once you have the training dataset, you can use it to train a classifier such as the Random 

Forest (RF) algorithm to classify all the images depending on the land cover classes. The 

training dataset contains all the necessary information to train the model for each land cover 

type based on their spectral characteristics. 

3.6 Step 6: Randomly Splitting the Data and Create the classifier 

In this step, we will create a Random Forest classifier and classify the image based on the 

training data. We'll first divide the data into training and testing. 80% of the data is used for 

training and 20% is used for testing and validation of the model. This ensures that the model's 

performance is evaluated on data it has not seen during training. 

Explanation of the Steps: 

1. Randomly Splitting the Data: 

o The randomColumn() function creates a column named 'random' with values 

between 0 and 1, allowing us to split the data randomly. 

o The trainSet includes features where the value of the 'random' column is 

greater than 0.2, which represents 80% of the data. 

o The testSet includes features where the value of the 'random' column is less 

than or equal to 0.2, which represents 20% of the data. 

2. Creating the Classifier: 

o The ee.Classifier.smileRandomForest(150) creates a Random Forest 

classifier with 150 trees. This is a powerful and commonly used machine 

learning algorithm for land cover classification. 

o The train() function is used to train the model with the trainSet, specifying the 

'Class' property as the target variable (land cover class) and the bands as the 

input features (spectral bands). 

3. Visualizing the Classified Image: 

The classified image is displayed on the map, with each land cover class assigned a 

different colour using the palette argument. 
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3.7 Step 7: Hyperparameter tuning (best number of decision tree) 

Hyperparameter tuning involves finding the best values for the parameters that are not 

learned from the data, such as the number of decision trees in a Random Forest classifier. The 

goal is to improve the model's accuracy by selecting the optimal number of trees. 

In this step, we will: 

1. Test the classifier performance with different numbers of decision trees. 

2. Evaluate the model’s accuracy for each value. 

3. Choose the number of trees that results in the highest accuracy. 

Explanation: 

1. Creating the List of Tree Numbers: 

o We use ee.List.sequence(10, 300, 20) to create a sequence of values ranging 

from 10 to 300, incrementing by 20. These values represent the different 

numbers of trees we will test in the Random Forest classifier. 

2. Evaluating the Model: 

o The function evaluateModel takes a number of trees as input, trains the 

Random Forest classifier with that number, and classifies the test dataset. 

o We use the errorMatrix function to calculate a confusion matrix and derive the 

accuracy of the classifier for that specific number of trees. 

3. Mapping Over Tree Numbers: 

o The map function applies the evaluateModel function to each value in 

numberTreeList, resulting in a list of accuracies for the different numbers of 

trees. 

4. Visualizing Accuracy vs. Number of Trees: 

o The accuracy results are plotted using the ui.Chart.array.values function, 

allowing you to visualize how the accuracy changes with the number of trees. 

o You can then choose the number of trees that maximizes the accuracy. 
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Final Step: 

Once you've identified the number of trees that results in the highest accuracy, you can update 

the classifier in your main model and Run. 

 

3.8 Step 8: Run the Classification and Visualize the Results 

Best Number of 

decision tree with 

highest accuracy 
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In this step, we will classify the image using the trained Random Forest model and visualize 

the results on the map. 

 

Explanation: 

1. Running the Classification: 

o The classification is performed using the classify method on the selected 

bands of the image. 

o The model is used here, which was trained with the optimal number of trees 

obtained from hyperparameter tuning. 

2. Visualizing the Results: 

o The classified (LULC) image is added to the map with specific visualization 

parameters. 

o Min and max values define the range of classification values to be visualized. 

o The palette defines the colours assigned to different land cover classes, where: 

▪ 0 could represent water (blue), 

▪ 1 could represent eroded land (white), 

▪ 2 could represent dense forest (green), 

▪ 3 could represent open forest (cyan), 

▪ 4 could represent agriculture (yellow), 

▪ 5 could represent plantation (purple), 

▪ 6 could represent built-up areas (red). 

Final Visualization 

Once you run this code, you should see the classified land use/land cover map overlaid on your 

selected region of interest in Google Earth Engine. This visualization will help you know about 

the spatial distribution of land cover types for the chosen study area. 
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3.9 Step 9: Print confusion matrix for accuracy assessment  

In this step, we will assess the efficiency of the Random Forest by estimating the confusion 

matrix for both the training and testing data. This assessment helps us understand how well the 

model performs in classifying land cover types. 

 

Explanation of Each Step: 

1. Confusion Matrix for the Test Dataset: 

o The confusion matrix is created using errorMatrix() by comparing the actual 

land cover classes (actual: 'Class') to the predicted classes (predicted: 

'classification'). 

o The confusion matrix provides insight into the classification performance, 

showing how many instances were correctly or incorrectly classified for each 

class. 

2. Printing the Confusion Matrix: 
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o The confusion matrix is printed to the console for examination, allowing you to 

see the true positives, false positives, true negatives, and false negatives for each 

class. 

3. Training Accuracy Calculation: 

o The confusion matrix for the training dataset is obtained using 

model.confusionMatrix(). 

o The training accuracy is calculated and printed using 

trainAccuracy.accuracy(). This gives you an idea of how well the model fits 

the training data. 

4. Classifying the Testing Sample: 

o The test dataset is classified again to validate the model's performance on 

unseen data. This is essential to evaluate the model's generalizability. 

5. Validation Accuracy Assessment: 

o A confusion matrix is generated for the validation data using 

validation.errorMatrix(). 

o The validation accuracy is printed, which indicates how well the model 

performs on the testing dataset. 

6. Additional Accuracy Metrics: 

o Overall Accuracy: This metric reflects the percentage of correct predictions 

from the confusion matrix (confusionMatrix.accuracy()). 

o Kappa Coefficient: This metric assesses the accuracy between predicted and 

the actual classifications, adjusting for the agreement that could occur by chance 

(confusionMatrix.kappa()). 

o Producers Accuracy: This indicates the quantity of actual positive instances 

correctly identified for each class. It answers the question: "Of all the actual 

classes, how many did we predict correctly?" 

(confusionMatrix.producersAccuracy()). 

o Consumers Accuracy: This indicates the proportion of predicted positive 

instances that were correctly classified. It answers the question: "Of all the 

predicted classes, how many were actually correct?" 

(confusionMatrix.consumersAccuracy()). 

3.10 Step 10: Calculating Area for Each Class Using the Chart Method 

In this step, we will estimate the area of each land cover class using the 

ui.Chart.image.byClass() method in Google Earth Engine (GEE). This method allows us to 

visualize the area distribution of different land cover classes within the region of interest (ROI). 

Explanation of Each Step: 

1. Creating an Image of Pixel Areas: 

o ee.Image.pixelArea(): This function generates an image where each pixel's 

value represents the area of that pixel in square meters. 
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o .multiply(1e-4): The pixel area is multiplied by 1×10-4 to convert square meters 

to hectares, since 1 ha=10,000 m2. 

o .addBands(LULC.rename('classification')): The classified (LULC) image is 

added as a new band named 'classification'. This allows us to link the pixel area 

values with their corresponding land cover classes. 

2. Setting Class Band: 

o classBand: 'classification': This specifies which band in the image contains the 

class labels for each pixel. In this case, it's the band we added earlier, which 

contains the classified values for each land cover type. 

3. Defining the Region of Interest: 

o region: ROI: The area over which the calculation will be performed is defined 

by the variable ROI, which represents the region of interest specified earlier in 

the workflow. 

4. Using the Sum Reducer: 

o reducer: ee.Reducer.sum(): The sum reducer is applied to estimate the total 

area for each land cover class. This will sum the pixel area values corresponding 

to each class within the ROI. 

5. Setting the Scale: 

o scale: 30: This parameter sets the scale at which to perform the calculations. 

For Landsat 8 imagery, a scale of 30 meters is appropriate, as it matches the 

pixel resolution of the data. 

6. Defining Class Labels: 

o classLabels: A list of strings representing the names of the land cover classes. 

This helps in labelling the chart axes and interpreting the results. 

7. Configuring Chart Options: 

o setOptions({ ... }): This method allows customization of the chart's appearance. 

The title of the chart, axis titles, and colour scheme are set to make the chart 

more informative and visually appealing. 

8. Printing the Area Chart: 

o Finally, print(area): This command outputs the area chart to the console in 

GEE, allowing you to visualize the area distribution of each land cover class. 
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3.11 Step 11: Export Image and Create Legend in Google Earth Engine 

Part 1: Exporting the Classified Image 

The Export.image.toDrive() function is used to export the classified image (LULC) to Google 

Drive for downloading and further use. 

Explanation: 

1. image: LULC: Specifies the classified image that you want to export. 

2. description: 'LULC_2023_ES': The name of the file when it is exported to Google 

Drive. 

3. folder: 'LULC_folder': The folder in Google Drive where the image will be saved. 

You can change the folder name or leave it blank to export directly to the main drive. 

4. region: ROI: The region of interest is defined earlier and specifies the boundary for 

the export. 

5. scale: 30: The spatial resolution for export, set to 30 meters for Landsat 8 data. 

6. maxPixels: 1e13: Sets the maximum number of pixels that can be exported (a large 

number to accommodate a large dataset). 

Part 2: Creating a Legend for the Map 

You can add a legend to your map to visually represent the LULC classes with colors. 

1. Creating the Legend Panel: 

position: 'bottom-left': Positions the legend panel at the bottom-left of the map. 

padding: '8px 15px': Adds some spacing around the content inside the legend panel. 

2. Creating the Legend Title: 

The title of the legend, "LULC_2023", is created with styling to make it bold and 

larger. 

3. Adding the Title to the Legend Panel: 

4. Creating Rows for Each Class in the Legend: 

o makeRow(): A function that creates a row with a colored box and a 

description (land cover type name). 

o colorBox: A label representing the color of each land cover type. 

o description: A label representing the name of the land cover type. 
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o ui.Panel.Layout.Flow('horizontal'): Ensures that the color box and label are 

placed next to each other in a row. 

5. Defining the Colours and Labels for the Legend: 

o palette: Defines the colours for each land cover class. 

o names: Defines the names of each land cover class. 

 6. Adding Rows for Each Land Cover Class: 

        A loop iterates through each class, adding a row (colour + name) for each land cover 

category. 

7. Adding the Legend to the Map: 

        This line adds the legend panel to the Google Earth Engine map interface. 

 

Part 3: To export an image from GEE to Google Drive, follow these steps: 

1. Go to the "Tasks" Tab: 

o In the top-right corner of the GEE code editor, you'll see a tab labelled "Tasks" next to 

the Console, Inspector, and Layers tabs. 

2. Run the Unsubmitted Task: 
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o Once you've defined your Export.image.toDrive() function in the script, it creates a 

task. 

o Go to the "Tasks" tab, where you will see your unsubmitted export task. 

o Click on "Run" next to the task. 

3. Fill in the Export Details: 

A dialog box will appear. Here you can fill in the necessary export details: 

o Task Name: Enter a descriptive name for the task (e.g., LULC_Export). 

o Coordinate Reference System (CRS): This refers to the projection system in which 

you want the exported image. For example, you can use EPSG:4326 for geographic 

coordinates or EPSG:32643 for UTM Zone 43N (customize according to your project 

needs). 

o Scale: This is the spatial resolution of the exported image. For Landsat 8, a common 

scale is 30 meters. 

o Drive Folder Name: Select or create a folder in your Google Drive where you want 

the image to be saved (e.g., LULC_folder). 

o Filename: Choose a name for the exported image file (e.g., LULC_2023_ES). 

o File Format: Choose the file format for the export, typically GeoTIFF (.tif). 

4. Click "Run": 

o After entering all the required information, click the "Run" button. 

5. Download the Image: 

o The export process will start, and it may take some time that depends on the image size. 

o Once the export is complete, the file will be available in your Google Drive under the 

folder name you specified. 

o You can now download the image from your Drive folder to your local machine. 

By following these steps, you will initiate the export process and can later download the 

classified LULC image from your Google Drive. 
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